المعين Secrets

المعين هو شكل هندسي يتكون من أربعة أضلاع أو جوانب لها نفس الطول، فمعرفة قياس طول ضلع واحد فيها يعني معرفة جميع أطوال الأضلاع الأخرى لأنها تكون بنفس القياس، كما تكون أضلاعها المتقابلة متوازية، كما يوجد للمعين ارتفاع يمكن قياسه من طول الخط الواصل بين منتصف الضلعين المتقابلين، ويتميز المعين بوجود قطرين أيضًا، ويكون قياسهما عبارة عن طول الخطوط التي تصل بين الزوايا المتقابلة مع بعضها البعض في المعين، ويتميز القطران بأنّه click here يتعامد كل منهما على الآخر كما أنهما يُنصّفان الزوايا التي يمران من خلالهما، أما زوايا المعين الأربعة فإن كل زاويتين متقابلتين في المعين متساويتين في القياس، حيث يكون زوجين من الزوايا حادتي القياس بينما الزوجين الآخرين منفرجتي القياس، أما إذا كانت إحدى زواياه قائمة فإنّه يتحول إلى مربع، وفيما يأتي ذكر أبرز طرق حساب المعين.[٢]

تسجيل حساب لديك حِساب؟ تسجيل الدخول هذا الموقع محمي بواسطة recaptcha ، تطبّق شروط الخدمة و سياسة الخصوصية لجوجل إعادة تعيين كلمة المرور

يمكن رسم دائرة داخل المعين يمس محيطها أضلاع المعين الأربعة، وتكون:

ولأنّ المعين يتكون من أربعة أضلاع متساوية فإننا نستطيع أن نصيغ محيط المعين بالقانون التالي : 

يمكن أيضاً حساب ارتفاع المعين اعتماداً على طول أحد أضلاعه، وقيمة المساحة، وقيمة إحدى زواياه، وذلك باستخدام المعادلتين الآتيتين:[٣]

مساحة متوازي الاضلاع بكل انواعه مع امثلة توضيحية لحساب المساحة

سعادة السفير / خالد بن حمود بن ناصر القحطاني السيرة الذاتية التواصل مع رئيس البعثة

يختلف المعين عن المربع أيضًا بأن زواياه غير قائمةٍ، بينما زوايا المربع جميعها متساوية وقائمة، لذا يصبح المعين مربعًا عندما تكون زواياه قائمة، وبعبارةٍ أخرى يمكننا القول بأن: "كل مربعٍ هو معين ولكن كل معينٍ ليس مربعًا".

لماذا كانت الإجابه غير مفيده الإجابة لا تحتوي على المعلومات التي أبحث عنها

المعين ويُلفظ بضمّ الميم، هو أحد الأشكال الهندسية رباعي الأضلاع ( مُضلّع رباعي بسيط) تتساوى أطوال هذه الأضلاع جميعها، أو يمكن تعريفه على أنه شكلٌ يتكوّن من مثلَثَين متساويَي الساقَين لهما قاعدة مشتركة وهذه القاعدة المشتركة محذوفةً، ويُعتبر على أنّه متوازي الأضلاع الضلعَين المتجاوبين فيه متساويَين، وكونَ المعين من المضلّعات فإنّ له محيطاً ومساحةً بقوانينَ خاصةٍ به.

لحساب مساحة المعين ، ما عليك سوى استخدام الصيغة التالية.

عند توصيل نقاط المنتصف لأنصاف أقطار المعين مع بعضها يمكننا الحصول على معين آخر داخل المعين الأصلي.

يحمل المعين جميع خواص متوازي الأضلاع، بالإضافة إلى هذه الخصائص:

يعتبر حالةً خاصّةً من متوازي الأضلاع وحالةٌ خاصّةٌ من الدالتون.

كلاهما أشكال رباعية؛ فالمربع هو شكل رباعي، والمعين هو أيضًا شكل رباعي الأضلاع.

Leave a Reply

Your email address will not be published. Required fields are marked *